
ISI - Secret Key Kryptography 
Building Blocks of Cryptography 
 

 
DH Diffie-Hellman public key cryptosystem 

RSA Rivest-Shamir-Adleman public key cryptosystem 

IV 
Initialization Vector, required to initialize 
symmetric encryption algorithms 

Nonce 
Random number, used in challenge-response 
protocols 

MAC 
Message Authentication Code, cryptographically 
secured checksum 

MIC Message Integrity Check - synonym for MAC 

 

Shannon's Model of a Secrecy System 
Secret Key (Symmetric) Cryptosystem  Confidentiality 

 
 
- The same, (pseudo-) randomly chosen key used for encryption 
and decryption 
- Key must be kept absolutely secret 
- Same key can be used for several messages, but should be 
changed periodically  secret key distribution problem! 
 

Block Ciphers 

 
 
- A block cipher cuts up a plaintext of arbitrary length into a series 
of blocks having a constant size of n bits. It then encrypts a single 
block of plaintext at a time and converts it into a block of 
ciphertext. Given any key, every possible plaintext block must 
result in a unique ciphertext block (so the mapping is 1:1) because 
otherwise, a ciphertext block could not be unambiguously 
decrypted. Feistel ciphers, a common class of block ciphers, 
achieve this by design 
Some Block Ciphers 

 
Most Popular Block Ciphers 
- DES is still used, although you really shouldn't anymore 
- 3DES is in widespread use 
- IDEA is patented (by ASCOM, Switzerland), so it's not seen very 
frequently 
- RC2, RC5, CAST and Blowfish are all used here and there, 
although they do not have major significance 
- AES gets more and more used - if you need a block cipher, use 
AES unless you have good arguments not to use it! 

Data Encryption Standard (DES) 
- Published in 1977 by the National Institute of Standards and 
Technology (NIST) 
- The first widespread modern cipher, could be implemented in 
hard- and software, based on Shannon's principle of confusion and 
diffusion 
- DES is conceptually a Feistel block cipher 
- Based on IBM's Lucifer Cipher and inputs from the National 
Security Agency (NSA) 
- Block size: 64 Bits 
- Key size: 56 Bits 
- Heavily cryptanalysed, no real weaknesses has been found 
 - very well build, but little of the design ideas became public 
- Involvement of NSA has always been subject of speculation 
 - NSA might have built in a hidden backdoor 
 - NSA has requested the key to be reduced from 64 to 56 Bits 
- DES has been a highly successful cipher for years! (still is: 3DES) 
 
16 Rounds of Confusion and Diffusion 

 
 
One Round of DES 

 

Feistel Networks 
At the heart of each DES round is a Feistel network, named after 
the IBM scientist Horst Feistel. The 64 bit block of incoming 
plaintext is split into a right and a left half of 32 bits each. The right 
half becomes the left half of the output text block at the end of 
the round, but it also enters a black box where it is first expanded 
to 48 bits by an expansion permutation and then XOR-ed with a 
48-bit wide key. The resulting sum then enters an array of eight S-
boxes with 6 input lines and 4 output lines each, producing a 32 bit 
wide output which then gets permuted by a P-box. The S- and P-
Box are those components that are most important for the 
security of DES, as they provide the core substitution (confusion) 
and transposition (diffusion) operations. The resulting output the 
black box is XOR-ed with the left half of the input text block and 
becomes the right half of the output text block. Each of the 16 DES 
rounds has a 48 bit key of its own, derived by continually shifting 
and permuting the full 56 bit key from round to round 

DES Decryption 
Looking at all the shifting, XOR-ing, substituting and permuting, 
one may thing that decrypting a ciphertext with DES is a complete-
ly different algorithm. In fact, it is not. As with all ciphers following 
the Feistel cipher design, nearly the same algorithm is used for 
decryption. We analyze this in detail by inverting (decrypting) a 
single round of DES, i.e. we want to derice Li-1 and Ri-1 from Li , Ri 
and Ki-1 

 - The illustration above shows that Li = Ri-1, so Ri-1 = Li  we 
 already have Ri-1 

 - The illustration also shows that Ri = Li-1 XOR f(Ri-1, Ki-1) where 
 f() is the function performed by the "purple" box. Reforming 
 this equation leads to Li-1 = Ri XOR f(Ri-1, Ki-1). Since we know Ri-1 

 to be equal to Li from the step above and also know Ri and Ki-1, 
 this allows to compute Li-1 and we have found both Li-1 and Ri-1 
Note that decrypting DES does therefore not require to invert the 
"purple" box (where the actual "security of DES" is found). If one 
analyses decryption of DES even further, one can see that 
decryption of a DES round is exactly the same algorithm as 
encrypting a round when the two halves R and L are swapped, so 
feeding Ri|Li into a round and using key Ki-1 produces Ri-1|Li-1 as its 
output. Applied to the entire DES algorithm, this means that 

decryption uses the same algorithm as encryption, with three 
minor modifications: 
 - The round keys are applied in reversed order 
 - After the initial permutation, the right and left halves of the 
 permuted ciphertext must be swapped 
 - Before the reverse permutation is applied, the halves must be 
 swapped again 

Performance of DES 
Although all these operations seem to be a lot of computational 
work, modern computers are capable of encrypting or decrypting 
"a few" million blocks per second 
 
Security of DES 
- Brute force attack is the best attack known 
- 1977: Diffie, Hellman: with USD 20 million, a million-chip machine 
could be build to find a DES key of a plaintext-ciphertext pair in 12 
hours 
- 1998: EFF built a DES-breaking machine, the EFF DES Cracker for 
USD 250'000; can find a DES key in 4.5 days (90 billion 
keys/second) 
- DES-Challenges by RSA Security to show limits of DES, given a 
ciphertext, USD 10'000 for the winner 
 
 DES is definitely no longer secure!  Triple DES 
 

Triple DES (3DES) 

 
 
- This variant is also called DES-EDE3 (there is also DES-EEE3) 
- True cryptographic strength of 3DES key is 2x56 bits = 112 bits 
- Sometimes, K3 is chosen equal to K1  two keys 
 

Advanced Encryption Standard (AES) 
- DES is no longer considered to be secure 
 - Key length is too short 
 - Triple DES is secure, but relatively slow 
- The need for a new Advanced Encryption Standard 
 - The National Institute of Standards and Technology (NIST) 
 started a public contest for AES in 1977 and selected Rijndael in 
 Oct. 2000 
 - On Nov. 26 2001, AES was officially published as the U.S. 
 Federal Information Processing Standard FIPS PUBS 197 
- Requirements for AES 
 - AES shall be publicly defined 
 - AES shall be a secret key (symmetric) block cipher 
 - AES shall be implementable efficiently in both hardware and 
 software 
 - AES shall have a block size of n = 128 bits 
 - AES shall have flexible key sizes of k = 128, 192, and 256 bits 
 - AES shall be freely available (no patents like IDEA etc.) 
- If possible, AES should be used today! (128-bit key is fine) 
 

Block Cipher Modes I 
Electronic Code Book Mode (ECB) 

 
In ECB block cipher mode, a plaintext input block is mapped 
statically to a ciphertext output block. Decryption for the receiver 
is straightforward as he simply decrypts one ciphertext block after 
the other to receive the plaintext blocks. While ECB mode is 
simple, there are a few problems. One is that the same block of 
ciphertext always decrypts to the same block of plaintext. This is 
already a potential weakness because if the attacker sees two 
identical blocks of ciphertext encrypted with the same key (for 
instance as part of a larger message), he directly knows the 
corresponding plaintext blocks must also be identical. If the 
attacker manages to collect many corresponding plaintext-
ciphertext blocks that were generated with the same key and if he 
has sufficient memory resources available, he can start building a 
lookup table or electronic code book (this is where the mode has 

its name from). For every ciphertext block he receives later, he can 
check the table if the corresponding plaintext is available. If the 
table contains reasonably many plaintext-ciphertext blocks, this 
may allow the attacker to at least decrypt parts (some blocks) of 
an encrypted message. Of course, the table gets useless as soon as 
sender and receiver change the key 
 
Electronic Code Book Mode - Attack 

 
 

Block Cipher Modes II 
Cipher Block Chaining Mode (CBC) 

 
In order to inhibit block replay attacks and codebook compilation, 
modern block ciphers are usually run in cipher block chaining 
mode. Each plaintext block is XOR-ed with the previous ciphertext 
block before encryption, so that identical plaintext blocks 
occurring in the same message show up as different ciphertext 
blocks. With CBC-mode, a ciphertext block Ci is not only depen-
dent on the plaintext block Pi and the key (as in ECB mode), but 
depends on the IV, all previous and the current plaintext block 
P1..Pi and the key. Even if two identical messages are encrypted 
with the same key, they still result in different ciphertexts if the 
initialisation vectors (see below) differ. At the receiving side each 
block coming out of the decryption algorithm must first be XOR-ed 
with the previously received ciphertext block in order to recover 
the plaintext. A single bit error occurring over the transmission 
channel will result in the loss of one whole plaintext block plus a 
single bit error in the immediately following plaintext block. Error 
propagation is therefore restricted to two plaintext blocks. 
Any CBC-encrypted message must be initialised with an initialisa-
tion vector (IV) that is openly transmitted over the insecure 
channel at the beginning of the session. In order to avoid replay 
attacks an IV value should be used only (for a given secret key) 
once and never be used again. This can be achieved either by 
assigning a monotonically increasing counter or a random value to 
the IV 
 
Cipher Block Chaining Mode - Attack 

 
While CBC mode avoids the problem of replaying ciphertext 
blocks, it is still possible to modify the message in transit in a 
reasonable way. We consider again Mike, who wants to increase 
the leading number of his salary from 3 to 7. The 3 of Mike’s salary 
is in plaintext block 17 (P17), this 3 should be changed to 7 (P’17). 
To see that this is possible, one must realise that 
P17 = DK(C17) XOR C16 _ P17 XOR M = DK(C17) XOR C16 XOR M = 
DK(C17) XOR (C16 XOR M), which means that by XOR-ing C16 with 
any bit-string M (we write C’16 for C16 XOR M) that has the length 
of the block size, P17 will also be XOR-ed with M when decrypting 

the ciphertext. Consequently, if the original content of the 
plaintext block P17 is known, it can be changed at will by 
the attacker. Assuming P17 contains 8 ASCII-encoded characters 
with 7 spaces and a 3 (00110011) and the attacker wants to 
change this to “ 7”, which contains 7 spaces and a 7 (00110111), 
he must choose M = 00…00|00000100, which means 56 zero-bits 
(to not change the spaces) and the byte 00000100. As a side 
effect, P16 will be garbled too: P’16 = DK(C’16) XOR C15 = DK(C16 
XOR M) XOR C15. There’s nothing the attacker can do to avoid this, 
expect hoping that the recipient won’t get suspicious by a “few 
random looking bytes” in the message. To prevent such attacks, 
one must make use of mechanisms to protect the integrity of a 
message, which will be discussed later in this course. 
 

 
 

Stream Ciphers 

 
 
Pseudo-Random Sequences with Linear Feedback Shift 
Registers (LFSRs) 

 
- Maximum possible sequence length is      with n registers 
- LFSRs are often used as building blocks for stream ciphers 
- GSM A5/1 is a cipher with 3 LFSRs of lengths 19, 22 and 23 
 
Stream Ciphers - RC 4 Internal state of 256 registers (8 bits 
wide) 

 
 
Simple state update by swapping registers 

 
  



Stream Cipher with Block Cipher: Block 
Cipher Modes III 
Output Feedback Mode (OFB) 

 
A block cipher in output feedback mode works as a key stream 
generator producing a pseudorandom key sequence a block at a 
time. By XOR-ing the key stream with the plaintext, the block 
cipher actually works as a stream cipher. Note that the individual 
block cipher boxes (denoted with E) still receive the shared secret 
key as an input, although this is not illustrated above. So the 
generated key sequence is based on and is unambiguously 
determined by the shared secret key. One advantage of this mode 
is that you can use a well-established block cipher that has 
demonstrated to produce ciphertext that is statistically indepen-
dent of the plaintext to produce a (most probably) highly random 
keystream without having to rely on another keystream generator 
 

Stream Cipher with Block Cipher: Block 
Cipher Modes IV 
Counter Mode (CTR) 

 
A block cipher in counter mode works as a key stream generator 
producing a pseudo-random key sequence a block at a time. By 
XOR-ing the key stream with the plaintext the block cipher actually 
works as a stream cipher. Compared to the similar OFB mode, the 
CTR mode has the advantage that decoding can be started at any 
point in the data stream without precomputing the whole key 
stream up to this point. CTR also allows to parallelize the 
encryption/decryption of a large plaintext/ciphertext. Counter 
mode is often used over unreliable communication channels 
(WLAN, GSM, UMTS) or protocols (UDP-based RTP) 
 

Summary 
- Block ciphers split the plaintext into equally-sized blocks and 
encrypt them block-by-block 
- Most popular block ciphers: DES (no longer secure), 3DES, AES 
- Two important block cipher modes 
 - Electronic Codebook Mode (ECB) 
  - Every plaintext block is statically mapped to a ciphertext 
  block, has security problems 
 - Cipher Block Chaining Mode (CBC) 
  - Avoids most problems of ECB by chaining the individual 
  encryptions together 
- Stream ciphers generate a keystream, which is XOR-ed bit-by-bit 
with the plaintext bitstream 
- Popular stream ciphers: RC4 
- Stream ciphers can be implemented with block ciphers 
 - Output Feedback Mode (OFB), Counter Mode (CTR) 


